Running head: INSERTION VS MERGE SORTING ALGORITHM

2
: INSERTION VS MERGE SORTING ALGORITHM

1

Insertion vs Shell Sorting Algorithm

Student’s Name

Institutional Affiliation

Insertion vs Merge Sorting Algorithm

Sorting algorithm are of different types, for the purpose of this paper the consideration will be insertion sorting algorithm and shell soring algorithm
Insertion sorting algorithm is a simple soring algorithm that develops the sorted array based on one item at a time (Millado, 2016). This type of sorting algorithm is preferable when sorting small arrays that comprises of less than 100 items. The algorithm is known to be faster when soring items as compared to other algorithms. One demerits of this algorithm is that it becomes slow when the number of items to be sorted increases. In terms of how insertion algorithm processes data, elements from the arrays are taken one element at a time, iterating through the sorted array and then finds the right position in the sorted array.
On the other side shell sorts make use of divide and conquer rule, where an array is divided into two sections and then sorting is done. Upon completion of sorting, the two halves are merged. The advantage of this sorting algorithm is that it is stable as compared to the insertion sorting algorithm (Zaveri, 2018). The primary disadvantage of this algorithm is that it requires the second array to be of the same size as the first array
In terms of time complexity of insertion sorting algorithm, it starts by soring pairs of elements, far apart from each other and then reduces the gaps between the elements that are to be compared, progressively. This algorithm is also known to be the generalization of insertion sort, since it allows exchanges items that are far apart. Shell sorting algorithm processes data by sorting all the elements that are far apart from each other, and progressively reduces the interval between all the elements that are to be sorted.
Non-Recursive Pseudocode for Insertion Sorting Algorithm

for(var j = rightIndex; h>= 0 && array[h] > value; h--) {
array[h + 1] = array[h];
}
array[h + 1] = value;
};
Non-Recursive Pseudocode for Shell Sorting Algorithm
#ifndef SHELL_SORT_HH

#define SHELL_SORT_HH

template<typename ItemType>

void ShellSort(ItemType* array, unsigned size)

{

 const unsigned hmax = size/9;

 unsigned h;

 for(h = 1; h <= hmax; h = 3*h+1);

 for(; h > 0; h /= 3)

 {

 for(unsigned i = h; i < size; ++i)

 {

 ItemType v = array[i];

 unsigned j = i;

 while(j >= h && v < array[j-h])

 {

 array[j] = array[j-h];

 j -= h;

 }

 array[j] = v;

 }

 }

}

#endif

Complexity example using arrays

/* Afunction for sorting arrays using insertion sorting*/

void insertionSort(int array[], int n)

{

 int x, key, y;

 for (x = 1; x < n; x++)

 {

 key = array[x];

 j = x-1;

 /* Moving elements of array [0....x-1], that are

 greater than key, to one position ahead

 of their current position */

 while (y >= 0 && array[y] > key)

 {

 array[y+1] = array[y];

 y= y-1;

 }

 arayr[y+1] = key;

 }

}

In terms of time and space complexity of O (n^2) of the insertion sorting algorithm, it grows proportionately to n^2. In the worst-case scenario, it takes n (n-1)/ 2 comparisons, therefore; its final behaviour is similar to n^2, but keeps on changing at the rate of n^2
References

Millado, E. (2016). Algorithms for Beginners — Bubble Sort, Insertion Sort, Merge Sort. Retrieved from https://medium.com/yay-its-erica/algorithms-for-beginners-bubble-sort-insertion-sort-merge-sort-29bd5506cc48
Zaveri, M. (2018) An intro to Algorithms: Searching and Sorting algorithms. Retrieved from https://codeburst.io/algorithms-i-searching-and-sorting-algorithms-56497dbaef20

