Running head: GREEDY SEARCH ALGORITHM





2
GREEDY SEARCH ALGORITHM

1

Greedy Search Algorithm
Student’s Name
Institutional Affiliation

Greedy Search Algorithm
Part 1: Pseudocode

function choice (C: set_candidate) return candidate;

function results (R: set_candidate) return boolean;

function viable (R: set_candidate) return boolean;

function greedy _algorithm (C: set_candidate) return set_candidate is

X : candidate;

R: set_candidate;

begin

            R := {};

            while (not choice(R)) and C /= {} loop

                        X := choice( C );

                        C := C - {X};

                        if feasible (R union {X} ) then

                                    R: = R union { X };

                        end if;

            end loop;

            if choice (R ) then

                        return R;

            else

                        return R;

             end if;

Supposing that the origin and object are not sorted arrays as shown in the table below,

Table 1 – Unsorted Array for the Original File and Target/ Object Disk

[image: image1]
Table 2 – Sorted Array for the Original File and Target/ Object Disk
	name
	1 
	2 
	
	---- 
	N / M 

	source 
	file (1) = F 3 S (3) 
	file (2) F 1 (S 1) 
	
	----
	FN (SN) 

	target 
	disk (1) D2 (T 2) 
	disk (2) D 3 (T 3) 
	
	----
	DM(TM) 



[image: image2]
	i 
	1 
	2 
	… 
	N / M 

	source 
	file (2) = F 1 S (1) 
	file (1) F 3 (S 3) 
	… 
	FN (SN) 

	target 
	disk (2) D 3 (T 3) 
	disk (3) D 2 (T 2) 
	… 
	DM(TM) 


            for (i = 0; i < n; i++)               // To check from the largest source/ original file

            {

                        for (j=0; j<=m; j++)     // To check the size of the disk

                        {

                                    if (disk[j]. capacity < file[i]. size)

keep finding until obtain file disk enough capacity

else

copy the file and minimize the disk storage capacity by the file size. Then move to the next file // map [the source index of file[i]] = the source index of disk[j]

                        }

            }

Part 2: Optimality
Perhaps, the continuous storage of a file to the disk could be the best and optimal solution through recursive operation. In simple terms store every potential mapping of a file to the disk recursively (GeeksforGeeks, n.d). Nevertheless, the greedy algorithm fails guarantee the entire problem to be an optimal solution (Lou et al., 2019). Therefore, the above algorithm is meant to provide a demonstration for the shortest as well as the quickest examination of the files and disks. The time complexity for this problem is given by O (m n + n log n) since both files and disks are sorted using heapsort, and iteration for all the files, and every file iterate a tree of discs whereby the height of the tree is log (the number of nodes) (Karleigh, Jimin & Eli, 2020)
Part 3: Time Complexity Using Brute Force and Exhaustive Search Method
The brute force algorithm comprises in examining, in every position in the text between 0 and n-m, whether an occurrence of the patterns begins there or not. Also, after every attempt, it changes the pattern with one position to the right side. Hence, in the searching process, the text characters comparison may be processed in any order (Rudikershaw, 2015). The time complexity of this searching process is O (m*n) where the number of files is n and the number of disks is m. In this case no sorting or tree is applied, but there are 2 nested iterations. Therefore, the common pseudocode for Brute Force Algorithm should look like this,

void Broute_Force (char *w, int m, char *p, int n) {

             int x, z;

            //Searching 

            for (z = 0; z <= n - m; ++z) {

                        for (x = 0; x < m && w[i] == p[x + z]; ++x);

                                     if (x >= m)

                                    RESULT(z);

   }

}
References

GeeksforGeeks. (n.d), Optimal Storage on Tapes. Retrieved from https://www.geeksforgeeks.org/optimal-storage-tapes/

Karleigh M, Jimin, K, & Eli, R. Retrieved Jan 20, 2020, from https://brilliant.org/wiki/greedy-algorithm/
Lou, Y., Chen, J., Zhang, L., & Hao, D. (2019). A survey on regression test-case prioritization. In Advances in Computers (Vol. 113, pp. 1-46). Elsevier.

Rudikershaw. (2015). Which Search Algorithm? - Part 1. Retrieved from https://www.rudikershaw.com/articles/whichsearch

